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SUMMARY 

An approximate projection scheme based on the pressure correction method is proposed to solve the Navier- 
Stokes equations for incompressible flow. The algorithm is applied to the continuous equations; however, there are 
no problems concerning the choice of boundary conditions of the pressure step. The resulting velocity and 
pressure are consistent with the original system. For the spatial discretization a high-order spectral element method 
is chosen. The high-order accuracy allows the use of a diagonal mass matrix, resulting in a very efficient 
algorithm. The properties of the scheme are extensively tested by means of an analytical test example. The scheme 
is M e r  validated by simulating the laminar flow over a backward-facing step. 
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1. INTRODUCTION 

The solution of the Navier-Stokes equations for unsteady incompressible fluid flow is still a major 
challenge in the field of computational fluid dynamics. An overview of the most important aspects 
with respect to the solution of the incompressible Navier-Stokes equations can be found in References 
1-5. The Navier-Stokes equations form a set of coupled equations for both velocity and pressure (or, 
better, the gradient of the pressure). One of the main problems related to the numerical solution of 
these equations is the imposition of the incompressibility constraint and consequently the calculation 
of the pressure. The pressure is not a thermodynamic variable, as there is no equation of state for an 
incompressible fluid. It is an implicit variable which instantaneously 'adjusts itself' in such a way that 
the velocity remains divergence-free. The gradient of the pressure, on the other hand, is a relevant 
physical quantity: a force per unit volume. The mathematical importance of the pressure in an 
incompressible flow lies in the theory of saddle-point problems (of which the steady Stokes equations 
are an example), where it acts as a Lagrangian multiplier that constrains the velocity to remain 
divergence-free. 

There are numerous approaches to solve the Navier-Stokes equations. For the solution of unsteady 
Navier-Stokes flow perhaps one of the most successful approaches to date is provided by the class of 
projection methods.&' Projection methods have been developed as a useful way of obtaining an 
efficient solution algorithm for unsteady incompressible flow. In this paper, projection methods are 
considered that are applied to the set of continuous equations, yielding very efficient and simple-to- 
implement algorithms. By decoupling the treatment of velocity and pressure terms, a set of easier-to- 
solve equations arises: a convectiondiffusion problem for the velocity, yielding an intermediate 
velocity which is not divergence-free; and a Poisson equation for the pressure (or a related quantity). 
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There are essentially two approaches for continuous projection methods: fractional step methods and 
pressure correction methods. 

The fractional step method9-” is based on a full splitting of the treatment of the pressure/in- 
compressibility constraint and the diffusion in different substeps. The intermediate step leads to a 
Poisson equation for the pressure at the new time level. While the pressure is well-defined up to an 
arbitrary constant by the original equations, it is less so when directly expressed in terms of a Poisson 
equation. This is because in the latter case the necessity arises to formulate a non-trivial boundary 
condition for the pressure. The choice of the pressure boundary condition is an aspect that is much 
discussed in the l i t e r a t ~ r e . ~ ” ~ ” ~  The obvious theoretical choice for the pressure boundary condition is 
a Neumann condition derived from the normal component of the momentum equation. The form in 
which this boundary condition is implemented is important not only because of the overall accuracy 
but also because of the efficiency of the numerical scheme. This aspect is still very much open for 
improvement. 

consist of a basic predictor-corrector procedure between the 
velocity and pressure fields. Using an initial approximation of the pressure, the momentum equation 
can be solved to obtain an intermediate velocity field. This velocity in general does not satisfy the 
divergence-free constraint and must therefore be corrected. By taking the divergence of the 
momentum equation and enforcing the incompressibility constraint, a Poisson equation for the 
pressure correction (the difference between the new and the old pressure) is obtained. Using the 
pressure correction, the new velocity field can then be computed. An advantage of the pressure 
correction technique is that, contrary to the full splitting approach, the final velocity is guaranteed to 
satisfy the incompressibility constraint; of course, this is only true for the velocity in the continuous 
(semidiscrete) formulation. A drawback of this continuous approach is that in order to ensure 
divergence freedom, a homogeneous Neumann condition for the Poisson equation for the pressure 
correction must be used, which clearly is not valid for the pressure itself.I6 

In this paper an approximate projection method related to the pressure correction approach is 
proposed to circumvent the above problem concerning the pressure computation. This is done by 
deriving the Poisson equation not for the pressure correction but for a related quantity. The 
homogeneous Neumann condition is still necessary for obtaining a divergence-free velocity (in the 
continuous sense at least), but since it now no longer holds for the pressure correction, it does not 
restrict the pressure computation. In the discrete sense, divergence freedom is only satisfied 
approximately, hence the classification approximate projection scheme.” It will also be shown that 
the solution of the projection scheme is consistent with that of the original Navier-Stokes equations. 
For the spatial discretization a high-order spectral element is chosen that exhibits 
excellent properties (small numerical diffusion and dispersion) for convection-dominated flows. 

The outline of the paper is as follows. Section 2 presents the governing equations for 
incompressible fluid flow: the Navier-Stokes equations. In Section 3 the projection-decoupling 
scheme is presented. In order to discuss the theoretical background of the scheme, it is first 
applied to the Stokes equations. For the Navier-Stokes problem the equations are first split according 
to an operator-splitting procedure that decouples the treatment of convection and diffusion,” 
including the pressure term temporarily in the viscous part of the equations. This is discussed in 
Section 4. Next the velocity treatment is decoupled from the pressure treatment by applying the 
projection algorithm. The properties of the algorithm are extensively analysed by means of an 
analytical test case. In Section 5 more numerical results are presented for the problem of the flow over 
a backward-facing step. Finally, in Section 6, conclusions are drawn. 

Pressure correction 
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2. GOVERNING EQUATIONS 

In this section, two-dimensional incompressible transient Newtonian flow is considered without thermal 
effects. Consider an open and bounded domain n c Rd with boundary r for t 2 0. The Navier-Stokes 
equations are given by the momentum equation 

(1) 

and the continuity equation, which implies that the flow is incompressible always and everywhere, 

all - + (U' V)u - uv2u + vp = f 
at 

in n 

v - u = o  ina (2) 

In these equations, u(x, t )  = (u l ,  u2)' is the velocity vector, p(x, t) is the kinematic pressure, f (x, t )  is 
the body force vector and v is the kinematic viscosity, which is assumed to be constant. 

In order for the problem to be well-posed, boundary and initial conditions have to be imposed. With 
respect to boundary conditions it is necessary to prescribe either velocity (essential boundary 
conditions) or surface traction force (natural boundary conditions) in the normal and tangential 

Suppose for convenience that the boundary r is composed of two non-overlapping 
parts ru and r, and assume that on each part either the velocity or the stress is prescribed. The 
boundary conditions can then be formulated as 

u = g, x on ro, t 2 0, (3) 

= h , ,  xonr,,, t 2 0 ,  - h n  p + u - = h  
an (4) 

with h,, u, the normal components and h,, u, the tangential components of the stress and the velocity 
respectively. 

In an incompressible flow the pressure is an implicit variable whose value is (pointwise) determined 
by the requirement that the incompressibility constraint V - u = 0 is satisfied there. The pressure can be 
prescribed in an indirect way via boundary condition (4). If, however, u, is specified on all of r, thus 
prohibiting the boundary condition (4), the pressure is only obtainable up to an arbitrary additive 
constant. In that case one can further require that 

fnp df l  = 0. 

Then also global mass conservation must be imposed through the boundary conditions, leading to the 
constraint 

r 

Finally, initial condhons have to be imposed on the system. These read 

where uo must satisfy 

n uo = n - g(x, 0), x on ru. (9) 

If either (8) or (9) is omitted, the problem (l), (2) is ill-p~sed.~ 
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3. SOLUTION OF THE STOKES EQUATIONS 

3.1. The projection scheme 

In this subsection the properties of the projection method are analysed by means of its application to 
the linear Stokes problem. The solution algorithm can be applied to either the continuous or the discrete 
system of equations. In the latter case the procedure does not involve a rediscretization of the original 
equations. Consequently, the boundary conditions are then already built in directly in the weak or 
variational formulation, thereby prohibiting the need to formulate a specific boundary condition for the 
discrete 'Poisson' equation. In this case the choice of the element for the velocity and the pressure is 
important with respect to the well-posedness of the system. As is well-known from the theory of saddle- 
point problems, a discrete form of the Brezz-BabuSka condition2' must then be satisfied for obtaining a 
unique velocity and pressure. For a high-order spectral element approximation this means that the 
degree of approximation for the pressure must be taken two degrees lower than that for the velocity.2' 

On the other hand, applying the decoupling procedure to the continuous equations leads to a more 
straightfoward scheme, since in that case the original problem is reformulated into several new (and 
simpler) problems. The theory of saddle-point problems is then no longer applicable; as a consequence, 
the degree of approximation for velocity and pressure can be taken the same, yielding a simpler-to- 
implement numerical scheme. Moreover, then also iterative techniques suited for high-order systems, 
such as finite element can easily be applied to the resulting discrete equations. In 
that case, however, the resulting Poisson equation requires a boundary condition. It will be shown that in 
the continuous projection scheme presented below, the use of a homogeneous Neumann boundary 
condition for the Poisson equation is valid and even essential in obtaining a divergence-free velocity 
field, while still the correct pressure can be obtained. 

Consider the unsteady Stokes equations with, for simplicity, only essential boundary conditions: 

V V = U + V P = ~  in a, au _ -  
at 

V - U = O  in ii, 
u = g on r, 
u(x, 0) = uo in ii. 

The momentum equation can be written in the form 
au 
- = 9 u  - vp i- f ,  at 

with 9 = vV2 the diffusion operator. Equation (1 1) is integrated using an implicit backward difference 
scheme24 with time step At. This yields the semidiscrete system 

k BOU"+l - c piU"+l-i 

- i= 1 = GJun+l - VP"+1 + f"+l. (12) At 
The approximation of a quantity at time In+' = (n + 1)At is denoted by the superscript n + 1. For a 
second-order backward difference scheme the following semidiscrete system results: 
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The pressure correction scheme proposed in this study consists of a predictor-corrector procedure 
between the velocity and pressure fields and proceeds as follows. 

1. Choose an appropriate predictor for the pressure, 

=p;+l(p",pn-I, * * .), (14) 

such that at least p;+' = pn+l + @(At). 

In the present scheme the pressure at the previous time level is used for that purpose (p;+l = p"), but 

2. Compute a predictor for the velocity field (u;+') with the aid of the momentum equation and the 

also higher-order extrapolation can be used. 

predictor for the pressure: 

3 n+l - A@$+' = 2u" - I un-1 - AtVp;+' + in a, 
(15) 

2 %  2 

un+' P = $+I on r. 
As in this equation the pressure is treated explicitly, the incompressibility constraint has to be dropped 

and as a consequence the predicted velocity field in general will not be divergence-free. The choice 
of the boundary condition $+I = g"+' implies that a pressure predictor that equals the exact pressure 

= p"+') will result in a prediction of the velocity that equals the exact velocity (,:+I = u"+l). 
Moreover, it will be shown below that for nonexact pressure predictors #p"+') this choice 
results in a convenient boundary condition for the equations that determine the pressure corrector. 

Correctors for the pressure @:+I) and velocity (u:+') will be formulated such that they satisfy the 
original momentum and continuity conditions in the internal region of the domain a: 

$$+' - Atgu:+' 2un - Iu"-I - AtV&+' + Aff"+' in a, 
(16) 2 

V*U:+' = o in a. 
Expressions for the velocity and pressure correctors can be obtained by subtracting the first equation of 
(1 6) from the first equation of (1 5). This yields 

(17) j ( ~ p  n+l - U, n+l ) - Atg(%+I - u:+') = AtV@+' -$I )  3 in S Z .  

Taking the divergence of both parts of equation (1 7) and imposing the incompressibility constraint on 
V u:+' = o yields a Poisson equation of the form 

(18) 
3 

2At 
v'@:+' - p;+' + VV. un+1) = - V. Un+l in a. 

Here the vector identities V2v = V(V * v) - V x (V x v) and V (V x v) = 0 are used, showing that 
the divergence and Laplace operators commute. 

A unique solution of @'+I, defined as 

q"+l =p;+l -p;+' +"v.u;+', (19) 

can only be obtained if equation (18) is equipped with a proper boundary condition. A boundary 
condition that is consistent with global mass conservation can be found if equation (1 8) is integrated 
over fl to give 
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or equivalently 

This suggests a consistent choice of a homogeneous Neumann boundary condition for @ + I  : 

&f+l 

an 
-- - 0  o n r  

3. Combining (18), (19) and (22), the following Poisson equation holds for @ + I :  

-- &f+' - 0 on r 
an 

4. As @+' is a solution of a Poisson equation with a Neumann boundary condition, the corrected 
pressure at the time level n + 1 can be computed from equation (1 9) as 

+*;+I - "V . $+I (24) 

5. The corrector (u:+') is assumed to be of the form u:+' = %+' + U such that V.u;+' = 

= qn+l 

up to an arbitmy constant. 

V - I$+' + V U = 0 in a. Equation (1 8) suggests that 

u!+' = $+I - $AtV@+I (25) 

is a good candidate. 

Equation (25) does guarantee that u:+' - n = g"+' - n on r by virtue of the homogeneous Neumann 
condition for q+l but does not guarantee that V * u:+' = 0 on r. 

Some remarks 

1 .  Substitution of the corrector velocity u:+' and corrector pressure p:+' as derived above into the 
first of equations (13) (using also equations (15) and (23) and supposing that the Laplacian and 
gradient commute) yields that this pair indeed satisfies the original momentum equations (13). 
The combination of (23) and (25) ensures that the corrector velocity satisfies divergence fieedom 
in a. The boundary condition (22) ensures that the boundary conditions in the normal direction 
is satisfied. However, satisfaction of the boundary conditions in tangential directions is not 
ensured (see also the next couple of remarks). Consequently, divergence freedom of the corrector 
velocity on the boundary r is not proven. 

2. Owing to the assumption that pi+' =pn+' + O(At), one may expect from (15) that also 
un+l ,, = u n+l + O(At) and thereby that V $+I = O(At). In that case equation (23) suggests that 
V@+' is bounded. Consequently, one may expect that (25) also ensures a consistent treatment of 
the boundary conditions in tangential directions. 

3. All the available numerical results obtained with the present technique (particularly the results 
presented in this paper) advocate that the boundary condltions in tangential directions are also 
satisfied with second-order accuracy in time. This estimation, however, as well as the heuristic 
derivation given above, requires a more extensive analysis of the scheme, which is beyond the 
scope of this paper. 
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A way to impose the exact no-slip boundary condition for uz+' could be to solve the momentum 
equation of system (16) (instead of using equation (25)) with K+' obtained from (24). Then, 
however, the incompressibility imposed by equation (25) will be lost. In that case it can be 
shown, under certain conditions of smoothness, that L"+l = V.uz+' satisfies the Helmholtz 
equation 

- UVZL"+', 
3 L"+l 
2 At 

which has the solution L"+' = 0 if L"+' = 0 or aL"+'/an = 0 on r. Since this cannot be ensured, 
V u;+l decays exponentially beyond a boundary layer of thickness (uAt)'12, as is also pointed 
out by Omzag et al.," which poses a severe restriction on the time step. Moreover, the final 
velocity field is not guaranteed to be divergence-free. Numerical experiments have indeed shown 
that with the above procedure V-u:+' is worse compared with the results obtained with the 
projection scheme and that the maximum is achieved in the boundary layer. Thus with respect to 
divergence freedom the present algorithm is better suited. 
Finally, with respect to initial conditions the initial velocity is given by equation (7); for the 
projection scheme also an initial condition for the pressure is required. The commonest way to 
obtain the initial pressure is to solve the pressure Poisson equation (PPE) with the Neumann 
boundary condition obtained from the momentum equation at t = 0. 

3.2. Spectral element discretization 

Application of a Galerkin spectral element discretization to the semidiscrete projection equations is 
performed in the standard way. As already stated in the previous subsection, there is no need to satisfy 
any form of the discrete Brezzi-BabuSka condition, since the decoupling procedure is applied to the 
continuous equations, leading to uncoupled problems for both velocity and pressure. Therefore the 
degree of approximation for the pressure can be taken equal to that for the velocity, resulting in a 
numerical algorithm that is simple to implement. The hlly discrete form of the projection scheme thus 
becomes as follows. 

Calculate u;+' by solving 

M + AtD)$+' = 2Mu" - MU"-' - AQp" i- AtMf"+', (27) 

with M the (diagonal) mass matrix, D the diffusion matrix and Q the merit matrix. The 
column p" contains the pressure components at t = P .  The column f contains also the 
contribution of non-homogeneous boundary conditions. 
Calculate qn+' by solving 

with K the Laplacian matrix and L the divergence matrix. 
Calculate u"+l via 

u"+l = $+l - $AtM-'Qq"+'. 

Calculate p"+' via 
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32 time steps (right) 
Figure 1. Contour plot of the pressure error for the Stokes problem with the projection method, using eight time steps (left) and 

From the above system it can be seen that it is essential that the mass matrix M is diagonal, since then 
the equations (29) and (30) do not involve the solution of a system, but only the calculation of matrix- 
vector products which can be performed at the elemental level. For high-order methods the use of a 
diagonal mass matrix is a valid approach with respect to accuracy, as is shown numerically by 
Timmermans and van de Vosse.'' 

Note that after spatial discretization, divergence freedom of the final computed velocity is only 
satisfied approximately, because from equations (28) and (29) it follows that 

Lu"" = Lu"" P - fAtLM-'Qq"+' = (I + LM-'QK-')Lu;+' # 0, (31) 

since K # LM-'Q. Also, the use of the diagonal mass matrix can further decrease the accuracy with 
which the incompressibility constraint is satisfied. However, the numerical results further on in this 
paper suggest that for a high-order method this loss of accuracy is not severe. 

3.3. Application to an analytical test case 

In order to test the performance of the projection scheme presented in the previous subsections, here a 
Stokes problem with an analytical solution is analysed. This analytical problem is adapted from 
Reference 26. 

Consider the Stokes problem (10) with u = 1. The source term is chosen such that the exact velocity 
and pressure are given by 

ul(x, t )  = - cos(x,) s in (~~)e -~ ' ,  
u2(x, r )  = sin(xl 1 cos(x2)e-", 
p(x, t )  = - S[COS(ZX,) + cos(2x2)]e-". 

The problem is solved on the domain n = (- 1, 1) x (- 1, 1) with time-dependent boundary conQtions 
for the velocity according to equation (32) and with initial velocity and pressure according to equation 
(32) at t = 0. The domain n is divided into n, = 4 elements of degree n. As a first test, this problem is 
approximated until t = 1 using a degree of approximation n such that the spatial errors are negligible 
compared with the errors due to the time integration. 

In Table I results are presented for a varying number of time steps for the velocity and its discrete 
divergence, and for the pressure and its discrete gradient, for the projection scheme. The scheme is 
second-order in time for the velocity and for the gradient of the pressure. The results are especially 
accurate with respect to divergence freedom. The results for the pressure itself are really bad, realizing 
that the maximum value of the pressure at t = 1 is O( lop2). Since it is shown that the pressure satisfies 
the PPE with the correct Neumann condition and is therefore consistent with the original Stokes 
equation, this may seem surprising. The picture becomes clearer if it is known where the error in the 
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Table I. Stokes problem with analytical solution. Predictor-corrector method. Discrete 
maximum error E for several quantities; spatial discretization fixed, number of time 
steps varying 

Time steps Discrete maximum error 

U Lu P QP 
8 0.47 x 10-3 o m  x 10-5 0.27 x 10' 0.17 x lo-' 

16 0.10 x 10-3 0.12 x 10-5 0.19 x 10' 0.27 x 10-3 
32 0.24 x 10-4 0.19 x 0.18 x 10' 0.50 x 10-4 
64 0.58 x 10-5 0.41 x lo-' 0.10 x 10' 0.13 x 10-4 

Table 11. Stokes problem with analytical solution. Predictor-corrector method with 
Dirichlet boundary conditions for the pressure. Discrete maximum error E for several 
quantities; spatial discretization fixed, number of time steps varying 

Time steps Discrete maximum error 

U Lu P QP 
8 0.14 x lo-* 0.23 x 10-3 0.34 x 10-3 0-40 10-4 

16 0.64 x 10-3 0.77 x 10-4 0.13 x 10-3 0.56 10-5 
32 0.99 x 10-4 0.1 1 x 10-4 0.70 x 10-5 0.47 x 
64 0.14 x 10-4 0.13 x 10-5 0.33 x 10-5 0.14 x 

pressure achieves its maximum value. In Figure 1 a contour plot of the pressure error is given for several 
time steps. The maximum error is clearly obtained near the comer points. The reason why the computed 
pressure is not correct is because for this test case the boundary is not smooth owing to the comers. The 
use of a Neumann condition overdeternines the problem at the comer points. 

that for a sufficiently smooth boundary the pressure obtained from 
the PPE with the Neumann condition will also satisfy the Dirichlet boundary condition which follows 
from the tangential component of the momentum equation. If the Dirichlet boundary condition is used, 
the Poisson problem for the pressure is well-posed and should yield the correct pressure. To emphasize 
this point, the same computations are made with the correct Dirichlet boundary conditions for the 
Poisson equation. Table I1 gives the results for the projection scheme. The pressure now is clearly 
correct. Moreover, the pressure gradient has improved considerably. It can also be seen that since the 
zero Neumann boundary condition no longer holds now, the velocity and its divergence freedom have 
deteriorated compared with the results in Table I. 

In the second test the problem is approximated until t = 0.5 using n, = 4 elements with varying degree 
of freedom n, but now trying to keep the time step small enough to preclude temporal errors. The results 
for the projection scheme are presented in Figure 2 (left). Spectral convergence is obtained for the 
velocity and for the discrete gradient of the pressure (note that from N = 13 onwards the time step is not 
yet small enough to preclude errors due to time integration). The pressure itself is not correct. Again 
performing the same computation, but now with the correct Dirichlet boundary conditions for the 
pressure, also gives spectral convergence for the pressure as shown in Figure 2 (right). 

It is proven by Gresho and 

4. SOLUTION OF THE NAVIER-STOKES EQUATIONS 

4.1. The operator-splitting approach 

Consider again the Navier-Stokes equations plus boundary and initial conditions formulated in 
Section 2. The first step in the solution method is to apply a similar operator-splitting technique to that 
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Figure 2. Stokes problem. Evolution of the discrete maximum error E for several quantities (left) and for the pressure in the case 
of Duichlet conditions (right) with n, = 4, n varying. N is the number of degrees of freedom in one direction 

described in Reference 8 for unsteady convection-difision problems, including the pressure term 
temporarily in the viscous part of the equation. The momentum equation is written in the form 

au 
- = 9 u  + vu - vp + f ,  
at (33) 

with 9 = (uV2) the diffusion operator and V = - (u V) the non-linear convection operator. Equation 
(33) is written in terms of an integrating factor in %:I9 

The 'Stokes' equation (34) is integrated using an implicit backward difference scheme with time step 
At. This yields the semidiscrete system 

To the terms &"+'J"+'-'9 u n+l-i (i = 1,2, . . .), the associated initial value problem Y 

-- %(') - Vii(s), 0 < s < iAt, 
as 
~ ( 0 )  = ,p+l - i  

is solved, from which it follows that 

Problem (36), accounting for the non-linear convection, is solved using a three-step explicit Taylor- 
Galerkin scheme also used by Jiang and Kawahara." This scheme is, for linear systems, third-order- 
accurate in time. The initial condition is iio = u"+IPi; a time step As such that At = jAs with j an integer 
is used. The semidiscrete convection step then becomes 
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After introduction of the simpler notation = 9(p+'-'%"+1-i , equation (37) leads to 

(39) p - i  - -i(j+l) - u  . 
The further deduction of the projection scheme is completely analogous to the Stokes case; also, the 
theory concerning boundary conditions and consistency of the computed solution holds now. The only 
difference consists of the equation for the intermediate velocity. 

For a second-order backward difference integration this part reads: calculate from 

(40) 3 u"+1 - Atg$+1 = 26" - 1 fin-1 - AtVpn + Atf"+', 
2 P  2 

with u;+l = g"+' on r. The quantities in and 3 - l  are calculated according to the associated convection 
problem (38), (39). 

The spectral element discretization of equation (40) is given by: calculate u;+l by solving 

GM + AtD)u;+' = 2Mi" - ;Mi"-' - AtQp" + AtMf"" . (41) 

The columns in and i2"" are calculated through the solution of 

where Crn+1/3 and Cm+ll2 denote the convection matrices at time levels m + and m + 1 respectively. 
Again, the use of a diagonal mass matrix M ensures an efficient evaluation without the need to solve 

the system. 

4.2. The analytical test case revisited 

Consider again the analytical velocity and pressure given by equation (32). For v=  1 this solution 
satisfies the Navier-Stokes equations with zero source term. The numerical results for this test case are 
quite similar to those obtained for the Stokes problem, as can be expected. To emphasize that the 
projection scheme performs well also in the presence of a non-linear convective term, the second test of 
Section 3.3 is repeated. The problem is approximated until t=0.5 using n,=4 elements of varying 
degree of approximation n, keeping the time step small enough to ensure that temporal errors are 
negligible. Figure 3 (left) shows the results for the scheme using the imposed Neumann condition for the 
Poisson equation. Spectral accuracy is obtained for the velocity and the discrete gradient of the pressure. 
For the pressure itself, again spectral accuracy can be achieved using the correct Dirichlet boundary 
condition, as shown in Figure 3 (right). 

5.  FLOW OVER A BACKWARD-FACING STEP 

As a second test case for the validation of the Navier-Stokes algorithm, the flow Over a backward- 
facing step in a channel is considered. The computational domain and boundary conditions are shown in 
Figure 4. The geometry is taken to be the same as that used in Reference 26. The height of the step, the 
height of the channel and the length of the channel are taken to be h = f , H = 1 and 1 = 15 (30 step 
heights) respectively. At the inflow boundary, located at the step, a parabolic profile 
u, = g(x2) = 24x2(4 - x2), u2 = 0 is prescribed (x2 = 0 is taken to be the horizontal midline of the 
channel). It is customary to prescribe zero stress at the outflow boundary: h, = h, = 0; see equation (4). 
In formulations where a pressure Poisson equation has to be solved to obtain the pressure (as is the case 
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Figure 3. Navier-Stokes problem. Evolution of the discrete maximum error E for several quantities (left) and for the pressure in 
the case of Dirichlet conditions (right) with n, = 4, n varying. N is the number of degrees of freedom in one direction 

with the present algorithm), the most frequently used outflow boundary condition for the pressure 
problem is p = 0 in combination with homogeneous Neumann condtions for the velocity components, 
since it results in no coupling between the pressure and velocity calculations. The Neumann conditions 
for the velocity are implemented naturally in the variational formulation; also, Neumann conditions for 
the velocity on the outflow perform better than Dirichlet conditions because they are less restrictive. 
Finally, on the walls of the channel, no-slip boundary conditions are assumed. 

The flow at three different values of the Reynolds number, Re = 100,200 and 400, is analysed. For 
these values of Re the flow is still laminar. The behaviour of the flow at higher values of Re, more 
specifically at Re = 800, is currently being investigated. In particular, since there is recent discussion in 
the literature about the stability of the flow for this value of Re when using high-order spatial 
discretization techniques:' a thorough and detailed analysis of the numerical results is required. The 
purpose of this paper is to validate the projection scheme by means of some test cases. 

The computations are performed until the steady state is reached using a spectral element mesh of 
n, = 32 elements (eight elements in the horizontal and four in the vertical direction) with degree of 
approximation n = 8. This leads to a total of 65 x 33 grid points, a much coarser mesh than that used by 
Kim and Moin.26 A plot of the spectral element mesh is given in Figure 5 .  Streamlines of the resulting 
steady flow for the different values of Re are shown in Figure 6. An excellent test of the accuracy of the 
numerical scheme is to measure the value of the reattachment length r with respect to Re. In Table 111 the 
values of the reattachment length divided by the step height h are given for both the present 
computations and the computations performed by Kim and Moin.26 It can be seen that they compare 
very well. 

u, = U? = 0 

h, = 0 

h, = 0 

r . 
1 

Figure 4. Flow over a backward-facing step. Computational domain and boundary conditlons (1 : 4 domain aspect ratio) 
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Table 111. Flow over a backward-facing step. Reattachment 
length r divided by step height h as a function of Reynolds 
number Re for the present computations and for the 
computations of Kim and Moin26 

r l h  

Re Present Kim and Moin 

1 0 0  
200 
400 

3.2 
5 4  
8.5 

3.2 
5.3 
8.6 

Figure 5. Flow over a backward-facing step. Spectral element mesh used (1 :4 domain aspect ratio) 

1 

Figure 6. Flow over a backward-facing step (1 : 4 domain aspect ratio). Streamlines a! Re = 100 (top), Re = 200 (centre) and 
Re = 400 (bottom) for n,= 8 x 4 elements of degree n = 8 
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6. CONCLUSIONS 

This paper has dealt extensively with the solution of the Navier-Stokes equations for unsteady 
incompressible flow. The choice of solution method is largely determined by the need for an efficient 
numerical scheme. The solution method presented consists of a continuous projection scheme with 
second-order accuracy in time. The method can be classified as a special application of the class of 
projection methods. In a projection method the original set of Navier-Stokes equations is split into a set 
of problems that are simple to solve for both velocity and pressure. In the projection approach the 
velocity and pressure are decoupled by taking the pressure at the previous time level, resulting in a 
convectiondiffusion problem for an intermediate velocity field that can be solved using an operator- 
splitting technique. Both velocity and pressure are then corrected. This results in a second-order- 
consistent algorithm. 

Gresho and SaniI3 emphasize the following weak points of a ‘projection’ approach. 

1. More-than-originally necessary smoothness for velocity and pressure are required. 
2 .  It is di@cult to derive a boundary condition for the pressure, since it involves the calculation of 

second-order derivatives ofthe velocity. In the present algorithm this problem does not exist. The 
boundary condition (a homogeneous Neumann condition) to be formulated is for a related 
quantity and not for the pressure itself. 

3. There is generally no discrete divergence-flee condition that will be sarisfied by the computed 
velocityfield. This is also true for the computed velocity of the fully discretized projection 
scheme, i.e. divergence freedom is only satisfied in the weak sense. However, in the continuous 
formulation the final velocity is guaranteed to be divergence-free, since the incompressibility 
constraint is applied to the new velocity at each time level and not to the intermediate velocity as 
is the case in the classical splitting approach. 

4. The solvability constraint for the pressure Poisson equation is ofren dificult to satisfi. In the 
present case this constraint, formulated by 

is automatically satisfied because of the choice of boundary conditions for the intermediate 
velocity. 

The algorithm has been thoroughly analysed by means of a test case with analytical velocity and 
pressure. Especially with respect to divergence freedom the scheme gives excellent results. Moreover, 
the scheme is clearly second-order-consistent in time for both the velocity and the gradient of the 
pressure. A ‘practical’drawback for the computation of the pressure is a smoothness requirement for the 
boundary. For the test case the Poisson problem is overdetermined at the comer points because of the use 
of the (imposed) Neumann condition. If the correct Dirichlet boundary condition is used, the scheme 
yields the correct pressure. Therefore a way to compute the pressure in the case of a non-smooth 
boundary could be to retrieve it through postprocessing of the discrete gradent on the boundary, 
yielding an accurate approximation of the Dirichlet boundary condition. The scheme has been further 
validated by simulating the laminar flow over a backward-facing step. For this test case also, excellent 
results are obtained. 

With respect to the spectral element discretization the above algorithm has several advantages. Firstly, 
the application of the decoupling algorithm to the continuous Navier-Stokes problem results in a set of 
equations that is simple to implement. The degree of approximation for velocity and pressure can be 
taken the same, as there is no need to satis@ any form of the Brezzi-BabuSka condition. Secondly, the 
use of a diagonal mass matrix, which is a valid approach in a high-order method, is essential with respect 
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to efficiency, since in that case both the convective equations for velocity and the correction equations 
for velocity and pressure do not involve the solution of a system, but only the calculation of matrix- 
vector products which can be performed at the elemental level. Finally, for the analytical test case it was 
also shown that spectral accuracy for both velocity and pressure can be achieved if the temporal errors 
are negligible. 
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